谷动谷力

 找回密码
 立即注册
查看: 701|回复: 0
打印 上一主题 下一主题
收起左侧

拉普拉斯变换简介

[复制链接]
跳转到指定楼层
楼主
发表于 2024-3-2 21:25:14 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
拉普拉斯变换简介

一、拉普拉斯变换的定义
定义:设函数f(x)是(0,+∞)上的分段连续函数,则其拉普拉斯变换是如下积分的结果:
0" data-eeimg="1"><span tabindex="0" class="MathJax_SVG" id="MathJax-Element-6-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='F(s)=L[f(x)]=∫0∞f(x)e−sxdx,Re(s)&gt;0'>�(�)=�[�(�)]=∫0∞�(�)�−����,��(�)>0
<span tabindex="0" class="MathJax_SVG" id="MathJax-Element-8-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='F(s)'>�(�) 称为<span tabindex="0" class="MathJax_SVG" id="MathJax-Element-1-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='f(x)'>�(�) 的像函数,<span tabindex="0" class="MathJax_SVG" id="MathJax-Element-10-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='f(x)'>�(�) 称为<span tabindex="0" class="MathJax_SVG" id="MathJax-Element-14-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='F(s)'>�(�) 的原函数。
一些常用函数的拉普拉斯变换表如下:
序号原函数像函数
1.11/s
2.x1/s²
3.2!/s³
4.3!/s^4
5.e^(ax)1/(s-a)
6.cos(ax)s/(s²+a²)
7.sin(ax)a/(s²+a²)
熟练背下这几个变换,就足可以应对绝大部分的题目了。拉普拉斯变换的作用有点像中学的对数,对数能把乘除乘方开方化成加减乘除,而拉普拉斯变换能把微积分的式子化成代数式。若把对数也当做变换的话,其过程就是对乘除的式子取对数,查对数表,运算,查反对数表得出结果;拉普拉斯变换的作用也是这样,对微积分的式子取拉普拉斯变换,查变换表,运算,查反变换得出结果。
二、举例
求函数 <span tabindex="0" class="MathJax_SVG" id="MathJax-Element-9-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='f(x)=4x2−3cos⁡2x+5e−x'>�(�)=4�2−3cos⁡2�+5�−� 的拉普拉斯变换。
利用上面的表格可得:
<span tabindex="0" class="MathJax_SVG" id="MathJax-Element-7-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='F(s)=L[f(x)]=L[4x2−3cos⁡2x+5e−x]=42!s3−3ss2+4+51s+1'>�(�)=�[�(�)]=�[4�2−3cos⁡2�+5�−�]=42!�3−3��2+4+51�+1
三、移位定理
有许多函数是由函数本身乘上一个指数函数组成的,例如: <span tabindex="0" class="MathJax_SVG" id="MathJax-Element-13-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='e−xsin⁡2x'>�−�sin⁡2� ,我们有如下的移位定理:若已知 <span tabindex="0" class="MathJax_SVG" id="MathJax-Element-2-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='f(x)'>�(�) 的变换是 <span tabindex="0" class="MathJax_SVG" id="MathJax-Element-5-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='F(s)'>�(�) ,则 <span tabindex="0" class="MathJax_SVG" id="MathJax-Element-3-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='eaxf(x)'>����(�) 的变换是 <span tabindex="0" class="MathJax_SVG" id="MathJax-Element-11-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='F(s−a)'>�(�−�)
例如:已知 <span tabindex="0" class="MathJax_SVG" id="MathJax-Element-12-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='L[cos⁡2x]=ss2+4'>�[cos⁡2�]=��2+4 ,则 <span tabindex="0" class="MathJax_SVG" id="MathJax-Element-4-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='L[e−xcos⁡2x]=(s+1)(s+1)2+4'>�[�−�cos⁡2�]=(�+1)(�+1)2+4
四、导数的变换
为了能用于解微分方程,这条定理必须记牢。若 <span tabindex="0" class="MathJax_SVG" id="MathJax-Element-15-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='L[f(x)]=F(s)'>�[�(�)]=�(�) ,则导数的变换是:
<span tabindex="0" class="MathJax_SVG" id="MathJax-Element-16-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='L[f′(x)]=sF(s)−f(0)'>�[�′(�)]=��(�)−�(0)
<span tabindex="0" class="MathJax_SVG" id="MathJax-Element-17-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='L[f″(x)]=s2F(s)−sf(0)−f′(0)'>�[�″(�)]=�2�(�)−��(0)−�′(0)
......
例如:已知 <span tabindex="0" class="MathJax_SVG" id="MathJax-Element-19-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='L[f(x)]=ss2+9'>�[�(�)]=��2+9 , <span tabindex="0" class="MathJax_SVG" id="MathJax-Element-18-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='f(0)=1'>�(0)=1 则 <span tabindex="0" class="MathJax_SVG" id="MathJax-Element-20-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='L[f′(x)]=sss2+9−1=−9s2+9'>�[�′(�)]=���2+9−1=−9�2+9
五、积分的变换
为了能用于解积分方程,这条也要牢记。若 <span tabindex="0" class="MathJax_SVG" id="MathJax-Element-21-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='L[f(x)]=F(s)'>�[�(�)]=�(�) ,则积分的变换是:
<span tabindex="0" class="MathJax_SVG" id="MathJax-Element-23-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='L[∫0xf(t)dt]=F(s)s'>�[∫0��(�)��]=�(�)�
例如:已知 <span tabindex="0" class="MathJax_SVG" id="MathJax-Element-22-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='L[f(x)]=ss2+9'>�[�(�)]=��2+9 ,则 <span tabindex="0" class="MathJax_SVG" id="MathJax-Element-24-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='L[∫0xf(t)dt]=ss2+91s=1s2+9'>�[∫0��(�)��]=��2+91�=1�2+9
六、用于求积分
由于变换本身就是个积分: <span tabindex="0" class="MathJax_SVG" id="MathJax-Element-25-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='F(s)=∫0∞f(x)e−sxdx'>�(�)=∫0∞�(�)�−���� ,若我们令 <span tabindex="0" class="MathJax_SVG" id="MathJax-Element-26-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='s=0'>�=0 ,则有如下公式:
<span tabindex="0" class="MathJax_SVG" id="MathJax-Element-27-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='F(0)=∫0∞f(x)dx'>�(0)=∫0∞�(�)�� 即要求这个积分,只要令其拉普拉斯变换的<span tabindex="0" class="MathJax_SVG" id="MathJax-Element-28-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='s=0'>�=0即可求出,不过要求积分本身收敛才行。举例如下:
例1.已知<span tabindex="0" class="MathJax_SVG" id="MathJax-Element-30-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='L[e−xcos⁡2x]=(s+1)(s+1)2+4'>�[�−�cos⁡2�]=(�+1)(�+1)2+4,求积分: <span tabindex="0" class="MathJax_SVG" id="MathJax-Element-29-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='I=∫0∞e−xcos⁡2xdx'>�=∫0∞�−�cos⁡2���
积分本身是存在的,所以只要令 <span tabindex="0" class="MathJax_SVG" id="MathJax-Element-31-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='s=0'>�=0即可得出:
<span tabindex="0" class="MathJax_SVG" id="MathJax-Element-32-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='I=∫0∞e−xcos⁡2xdx=(s+1)(s+1)2+4|s=0=15'>�=∫0∞�−�cos⁡2���=(�+1)(�+1)2+4|�=0=15
七、用于解微分方程
利用拉普拉斯变换的微分积分变换定理,就可以把微分方程转化成代数方程来解,下面通过举例来感受一下。
例2.解微分方程: <span tabindex="0" class="MathJax_SVG" id="MathJax-Element-33-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='y′+y=x,y(0)=1'>�′+�=�,�(0)=1
对方程两端取拉普拉斯变换: <span tabindex="0" class="MathJax_SVG" id="MathJax-Element-34-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='L[y′+y]=L[x]'>�[�′+�]=�[�]
<span tabindex="0" class="MathJax_SVG" id="MathJax-Element-35-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='sY(s)−f(0)+Y(s)=1s2'>��(�)−�(0)+�(�)=1�2 ,将初始条件代入,解出 <span tabindex="0" class="MathJax_SVG" id="MathJax-Element-36-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='Y(s)'>�(�) 得:
<span tabindex="0" class="MathJax_SVG" id="MathJax-Element-37-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='Y(s)=1+s2s2(s+1)=1s2−1s+2s+1'>�(�)=1+�2�2(�+1)=1�2−1�+2�+1
再查表反变换(记熟了就直接来)即可得出微分方程的解是:
<span tabindex="0" class="MathJax_SVG" id="MathJax-Element-38-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='y=x−1+2e−x'>�=�−1+2�−�
习题:
1.求函数的拉普拉斯变换:
(a) <span tabindex="0" class="MathJax_SVG" id="MathJax-Element-39-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='f(x)=xe−x'>�(�)=��−�
(b) <span tabindex="0" class="MathJax_SVG" id="MathJax-Element-40-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='f′(x)=1+x,f(0)=0'>�′(�)=1+�,�(0)=0
2.解微分方程:
<span tabindex="0" class="MathJax_SVG" id="MathJax-Element-41-Frame" role="presentation" style="margin: 0px; padding: 0px; border: 0px currentColor; border-image: none; text-align: left; text-transform: none; line-height: normal; text-indent: 0px; letter-spacing: normal; font-size: 16px; font-style: normal; font-weight: normal; word-spacing: normal; float: none; display: inline-block; white-space: nowrap; position: relative; direction: ltr; min-height: 0px; max-height: none; min-width: 0px; max-width: none; overflow-wrap: normal;" data-mathml='y′−2y=e−x,y(0)=1'>�′−2�=�−�,�(0)=1

+10
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|Archiver|手机版|深圳市光明谷科技有限公司|光明谷商城|Sunshine Silicon Corpporation ( 粤ICP备14060730号|Sitemap

GMT+8, 2025-1-15 20:20 , Processed in 0.119248 second(s), 39 queries .

Powered by Discuz! X3.2 Licensed

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表