|
Linux内核性能架构:perf_event
作者简介:荣涛,csdn博主。 组件概述Linux性能子系统在性能分析中非常有用。以下显示了这篇文章中的perf子系统componenet 。
“ perf”是可用于执行性能分析的用户程序。 仅暴露给用户空间的系统调用perfeventopen返回一个perf事件fd。该系统调用没有glibc包装器。更多信息可以在手册页中阅读。此功能是最复杂的功能之一。 “ perf_event”是内核中的核心结构。性能事件有几种类型,例如跟踪点,软件,硬件。 我们还可以通过perf event fd将eBPF程序附加到trae事件。 抽象层以下显示了perf的抽象层。 每个类型的性能事件都有一个对应的PMU(性能监视单元)。例如,跟踪点pmu具有以下pmu。
与硬件相关的PMU具有与arch-spec有关的抽象结构,例如'struct x86_pmu'。与硬件相关的结构将读取/写入性能监视器MSR。 每个PMU都通过调用“ perf_pmu_register”进行注册。 性能事件上下文性能可以监视cpu相关事件和任务相关事件。他们两个都可以有几个受监视的事件。因此,我们需要一个上下文来连接事件。这是“ perf_event_context”。 有两种上下文,软件和硬件,定义如下: 对于CPU级别,上下文定义为“ perf_cpu_context”,并在“ struct pmu”中定义为percpu变量。
如果PMU是相同类型,则它们将共享一个“ struct perf_cpu_context”。 int perf_pmu_register(struct pmu *pmu, const char *name, int type) { int cpu, ret, max = PERF_TYPE_MAX;
mutex_lock(&pmus_lock); ... pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); if (pmu->pmu_cpu_context) goto got_cpu_context;
ret = -ENOMEM; pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); if (!pmu->pmu_cpu_context) goto free_dev;
for_each_possible_cpu(cpu) { struct perf_cpu_context *cpuctx;
cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); __perf_event_init_context(&cpuctx->ctx); lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); cpuctx->ctx.pmu = pmu; cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
__perf_mux_hrtimer_init(cpuctx, cpu);
cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); cpuctx->heap = cpuctx->heap_default; }
... }
下图显示了此帖子中的相关结构。
对于任务级别,“ task_struct”具有如下定义的指针数组: 下图显示了相关结构,也来自于该帖子。
CPU在线时将触发CPU级性能事件。但是对于任务级别的perf事件,只能通过运行任务来触发它。“ perf_cpu_context”的task_ctx包含当前正在运行的任务的perf上下文。 性能事件上下文时间表性能的一项工作是安排任务的perf_event_context的进出时间。 下图显示了与性能相关的任务计划输入和输出功能。 最后,将调用PMU的add和del回调。让我们以跟踪点为例。add回调是“ perf_trace_add”,而del回调是“ perf_trace_add”。 int perf_trace_add(struct perf_event *p_event, int flags) { struct trace_event_call *tp_event = p_event->tp_event;
if (!(flags & PERF_EF_START)) p_event->hw.state = PERF_HES_STOPPED;
/* * If TRACE_REG_PERF_ADD returns false; no custom action was performed * and we need to take the default action of enqueueing our event on * the right per-cpu hlist. */ if (!tp_event->class->reg(tp_event, TRACE_REG_PERF_ADD, p_event)) { struct hlist_head __percpu *pcpu_list; struct hlist_head *list;
pcpu_list = tp_event->perf_events; if (WARN_ON_ONCE(!pcpu_list)) return -EINVAL;
list = this_cpu_ptr(pcpu_list); hlist_add_head_rcu(&p_event->hlist_entry, list); }
return 0; }
void perf_trace_del(struct perf_event *p_event, int flags) { struct trace_event_call *tp_event = p_event->tp_event;
/* * If TRACE_REG_PERF_DEL returns false; no custom action was performed * and we need to take the default action of dequeueing our event from * the right per-cpu hlist. */ if (!tp_event->class->reg(tp_event, TRACE_REG_PERF_DEL, p_event)) hlist_del_rcu(&p_event->hlist_entry); }
“ perf_event”将被添加或删除到“ tp_event-> perf_events”列表中。 perf_event_open流 perf_event_open ->perf_copy_attr ->get_unused_fd_flags(fd) ->perf_event_alloc ->perf_init_event ->perf_try_init_event ->pmu->event_init() ->find_get_context ->perf_install_in_context ->__perf_install_in_context ->add_event_to_ctx ->list_add_event ->perf_group_attach ->add_event_to_ctx ->fd_install
perf_event_open将调用'pmu-> event_init'来初始化事件。并将perf_event添加到perf_event_context中。 性能跟踪事件回顾跟踪点PMU的定义。 static struct pmu perf_tracepoint = { .task_ctx_nr = perf_sw_context,
.event_init = perf_tp_event_init, .add = perf_trace_add, .del = perf_trace_del, .start = perf_swevent_start, .stop = perf_swevent_stop, .read = perf_swevent_read, };
让我们尝试看一下perf子系统如何监视跟踪点事件。 性能事件初始化称为“ perf_tp_event_init”。 'perf_trace_init'将找到指定的跟踪点。 “ perf_trace_event_reg”将分配并初始化“ tp_event_perf_events”列表。并使用TRACE_REG_PERF_REGISTER调用“ tp_event-> class-> reg”。 static int perf_trace_event_reg(struct trace_event_call *tp_event, struct perf_event *p_event) { struct hlist_head __percpu *list; int ret = -ENOMEM; int cpu;
p_event->tp_event = tp_event; if (tp_event->perf_refcount++ > 0) return 0;
list = alloc_percpu(struct hlist_head); if (!list) goto fail;
for_each_possible_cpu(cpu) INIT_HLIST_HEAD(per_cpu_ptr(list, cpu));
tp_event->perf_events = list;
... ret = tp_event->class->reg(tp_event, TRACE_REG_PERF_REGISTER, NULL); if (ret) goto fail;
total_ref_count++; return 0; ... }
“ tp_event_> class-> reg”回调为“ trace_event_reg”。 int trace_event_reg(struct trace_event_call *call, enum trace_reg type, void *data) { struct trace_event_file *file = data;
WARN_ON(!(call->flags & TRACE_EVENT_FL_TRACEPOINT)); switch (type) { ...
#ifdef CONFIG_PERF_EVENTS case TRACE_REG_PERF_REGISTER: return tracepoint_probe_register(call->tp, call->class->perf_probe, call); case TRACE_REG_PERF_UNREGISTER: tracepoint_probe_unregister(call->tp, call->class->perf_probe, call); return 0; case TRACE_REG_PERF_OPEN: case TRACE_REG_PERF_CLOSE: case TRACE_REG_PERF_ADD: case TRACE_REG_PERF_DEL: return 0; #endif } return 0; }
我们可以看到'call-> class-> perf_probe'将被注册到跟踪点。从我的帖子。我们知道这个“ perf_probe”是“ perf_trace _ ## call”。
static notrace void perf_trace_##call(void *__data, proto) { struct trace_event_call *event_call = __data; struct trace_event_data_offsets_##call __maybe_unused __data_offsets; struct trace_event_raw_##call *entry; struct pt_regs *__regs; u64 __count = 1; struct task_struct *__task = NULL; struct hlist_head *head; int __entry_size; int __data_size; int rctx; __data_size = trace_event_get_offsets_##call(&__data_offsets, args); head = this_cpu_ptr(event_call->perf_events); if (!bpf_prog_array_valid(event_call) && __builtin_constant_p(!__task) && !__task && hlist_empty(head)) return; __entry_size = ALIGN(__data_size + sizeof(*entry) + sizeof(u32),
sizeof(u64)); __entry_size -= sizeof(u32); entry = perf_trace_buf_alloc(__entry_size, &__regs, &rctx); if (!entry) return; perf_fetch_caller_regs(__regs); tstruct { assign; } perf_trace_run_bpf_submit(entry, __entry_size, rctx, event_call, __count, __regs, head, __task); }
如果“ event_call-> perf_events”为空,则表示没有任何当前的perf_event添加到该跟踪点。这是'perf_event_open'初始化perf_event时的默认状态。 性能事件添加在CPU中调度任务时,将调用'pmu-> add',并将'perf_event'链接到'event_call-> perf_events'链接列表。 性能事件从CPU调度任务后,将调用“ pmu-> del”,并且将从“ event_call-> perf_events”链接列表中删除“ perf_event”。 性能事件触发器如果'event_call-> perf_events'不为空,则将调用'perf_trace_run_bpf_submit'。如果没有附加eBPF程序,则将调用“ perf_tp_event”。 void perf_tp_event(u16 event_type, u64 count,
struct pt_regs *regs, struct hlist_head *head, int rctx, struct task_struct *task) { struct perf_sample_data data; struct perf_event *event;
struct perf_raw_record raw = { .frag = { .size = entry_size, .data = record, }, };
perf_sample_data_init(&data, 0, 0); data.raw = &raw;
perf_trace_buf_update(record, event_type);
hlist_for_each_entry_rcu(event, head, hlist_entry) { if (perf_tp_event_match(event, &data, regs)) perf_swevent_event(event, count, &data, regs); }
... perf_swevent_put_recursion_context(rctx); }
对于“ event_call-> perf_events”列表中的每个“ perf_event”。它调用perf_swevent_event触发性能事件。 static void perf_swevent_event(struct perf_event *event, u64 nr,struct perf_sample_data *data, struct pt_regs *regs) { struct hw_perf_event *hwc = &event->hw;
local64_add(nr, &event->count);
if (!regs) return;
if (!is_sampling_event(event)) return;
if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { data->period = nr; return perf_swevent_overflow(event, 1, data, regs); } else data->period = event->hw.last_period;
if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) return perf_swevent_overflow(event, 1, data, regs);
if (local64_add_negative(nr, &hwc->period_left)) return;
perf_swevent_overflow(event, 0, data, regs); } static void perf_swevent_event(struct perf_event *event, u64 nr,struct perf_sample_data *data, struct pt_regs *regs) { struct hw_perf_event *hwc = &event->hw;
local64_add(nr, &event->count);
if (!regs) return;
if (!is_sampling_event(event)) return;
if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { data->period = nr; return perf_swevent_overflow(event, 1, data, regs); } else data->period = event->hw.last_period;
if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) return perf_swevent_overflow(event, 1, data, regs);
if (local64_add_negative(nr, &hwc->period_left)) return;
perf_swevent_overflow(event, 0, data, regs); }
'perf_swevent_event'添加'event-> count'。如果事件未采样,则仅返回。Tis是性能计数模式。如果perf_event在样本模式下,则需要复制跟踪点数据。以下是呼叫链。 软件性能事件软件PMU定义如下: static struct pmu perf_swevent = { .task_ctx_nr = perf_sw_context,
.capabilities = PERF_PMU_CAP_NO_NMI,
.event_init = perf_swevent_init, .add = perf_swevent_add, .del = perf_swevent_del, .start = perf_swevent_start, .stop = perf_swevent_stop, .read = perf_swevent_read, };
性能事件初始化“ perf_swevent_init”将被调用。它称为“ swevent_hlist_get” static int perf_swevent_init(struct perf_event *event) { u64 event_id = event->attr.config;
if (event->attr.type != PERF_TYPE_SOFTWARE) return -ENOENT;
/* * no branch sampling for software events */ if (has_branch_stack(event)) return -EOPNOTSUPP;
switch (event_id) { case PERF_COUNT_SW_CPU_CLOCK: case PERF_COUNT_SW_TASK_CLOCK: return -ENOENT;
default: break; }
if (event_id >= PERF_COUNT_SW_MAX) return -ENOENT;
if (!event->parent) { int err;
err = swevent_hlist_get(); if (err) return err;
static_key_slow_inc(&perf_swevent_enabled[event_id]); event->destroy = sw_perf_event_destroy; }
return 0; }
这将创建一个percpu'swhash-> swevent_hlist'列表。还要将perf_swevent_enabled [event_id]设置为true。 性能事件添加'perf_swevent_add'将perf_event添加到percpu哈希列表中。 static int perf_swevent_add(struct perf_event *event, int flags) { struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); struct hw_perf_event *hwc = &event->hw; struct hlist_head *head;
if (is_sampling_event(event)) { hwc->last_period = hwc->sample_period; perf_swevent_set_period(event); }
hwc->state = !(flags & PERF_EF_START);
head = find_swevent_head(swhash, event); if (WARN_ON_ONCE(!head)) return -EINVAL;
hlist_add_head_rcu(&event->hlist_entry, head); perf_event_update_userpage(event);
return 0; }
性能事件'perf_swevent_del'从哈希列表中删除。 static void perf_swevent_del(struct perf_event *event, int flags) { hlist_del_rcu(&event->hlist_entry); }
性能事件触发器以任务开关为例。 “ perf_sw_event_sched”将被调用。 static inline void perf_event_task_sched_out(struct task_struct *prev, struct task_struct *next) { perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
if (static_branch_unlikely(&perf_sched_events)) __perf_event_task_sched_out(prev, next); }
在perf_event_task_sched_out-> _perf_sw_event-> do_perf_sw_event调用链之后。 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, u64 nr, struct perf_sample_data *data, struct pt_regs *regs) { struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); struct perf_event *event; struct hlist_head *head;
rcu_read_lock(); head = find_swevent_head_rcu(swhash, type, event_id); if (!head) goto end;
hlist_for_each_entry_rcu(event, head, hlist_entry) { if (perf_swevent_match(event, type, event_id, data, regs)) perf_swevent_event(event, nr, data, regs); } end: rcu_read_unlock(); }
如我们所见,它最终会调用“ perf_swevent_event”来触发事件。 硬件性能事件硬件PMU之一定义如下: static struct pmu pmu = { .pmu_enable = x86_pmu_enable, .pmu_disable = x86_pmu_disable,
.attr_groups = x86_pmu_attr_groups,
.event_init = x86_pmu_event_init,
.event_mapped = x86_pmu_event_mapped, .event_unmapped = x86_pmu_event_unmapped,
.add = x86_pmu_add, .del = x86_pmu_del, .start = x86_pmu_start, .stop = x86_pmu_stop, .read = x86_pmu_read,
.start_txn = x86_pmu_start_txn, .cancel_txn = x86_pmu_cancel_txn, .commit_txn = x86_pmu_commit_txn,
.event_idx = x86_pmu_event_idx, .sched_task = x86_pmu_sched_task, .task_ctx_size = sizeof(struct x86_perf_task_context), .swap_task_ctx = x86_pmu_swap_task_ctx, .check_period = x86_pmu_check_period,
.aux_output_match = x86_pmu_aux_output_match, };
硬件性能事件非常复杂,因为它将与硬件交互。这里不会深入介绍硬件。 性能事件初始化 x86_pmu_event_init ->__x86_pmu_event_init ->x86_reserve_hardware ->x86_pmu.hw_config() ->validate_event
此处的“ x86_pmu”是基于arch规范的PMU结构。 性能事件添加x86_pmu_add->收集事件->-> x86_pmu.schedule_events()-> x86_pmu.add 'collect_events'集 性能事件x86_pmu_del将删除“ cpuc-> event_list”中的事件。 性能事件触发器触发硬件事件时,它将触发NMI中断。此处理程序是“ perf_event_nmi_handler”。 static int perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs) { u64 start_clock; u64 finish_clock; int ret;
/* * All PMUs/events that share this PMI handler should make sure to * increment active_events for their events. */ if (!atomic_read(&active_events)) return NMI_DONE;
start_clock = sched_clock(); ret = x86_pmu.handle_irq(regs); finish_clock = sched_clock();
perf_sample_event_took(finish_clock - start_clock);
return ret; }
以Taks'x86_pmu.handle_irq'= x86_pmu_handle_irq为例。 for (idx = 0; idx < x86_pmu.num_counters; idx++) { if (!test_bit(idx, cpuc->active_mask)) continue;
event = cpuc->events[idx];
val = x86_perf_event_update(event); if (val & (1ULL << (x86_pmu.cntval_bits - 1))) continue;
/* * event overflow */ handled++; perf_sample_data_init(&data, 0, event->hw.last_period);
if (!x86_perf_event_set_period(event)) continue;
if (perf_event_overflow(event, &data, regs)) x86_pmu_stop(event, 0); }
在这里,我们可以看到它对“ cpuc”进行了迭代,以查找触发该中断的事件。 参考资料: Linux kernel perf architecture (terenceli.github.io)
|
+10
|