谷动谷力

标题: 【深入理解Linux内核锁】 原子操作 [打印本页]

作者: sunsili    时间: 2023-6-9 23:00
标题: 【深入理解Linux内核锁】 原子操作
【深入理解Linux内核锁】 原子操作

原子操作 1、原子操作思想
原子操作(atomic operation),不可分割的操作。其通过原子变量来实现,以保证单个CPU周期内,读写该变量,不能被打断,进而判断该变量的值,来解决并发引起的互斥。
Atomic类型的函数可以在执行期间禁止中断,并保证在访问变量时的原子性。
同时,Linux内核提供了两类原子操作的接口,分别是针对位和整型变量的原子操作。   
2、整型变量原子操作2.1 API接口
对于整形变量的原子操作,内核提供了一系列的 API接口
/*设置原子变量的值*/
atomic_t v = ATOMIC_INIT(0);            /* 定义原子变量v并初始化为0 */
void atomic_set(atomic_t *v, int i);    /* 设置原子变量的值为i */

/*获取原子变量的值*/
atomic_read(atomic_t *v);          /* 返回原子变量的值*/

/*原子变量的加减*/
void atomic_add(int i, atomic_t *v);      /* 原子变量增加i */
void atomic_sub(int i, atomic_t *v);      /* 原子变量减少i */

/*原子变量的自增,自减*/
void atomic_inc(atomic_t *v);    /* 原子变量增加1 */
void atomic_dec(atomic_t *v);        /* 原子变量减少1 */

/*原子变量的操作并测试*/
int atomic_inc_and_test(atomic_t *v);  /*进行对应操作后,测试原子变量值是否为0*/
int atomic_dec_and_test(atomic_t *v);
int atomic_sub_and_test(int i, atomic_t *v);

/*原子变量的操作并返回*/
int atomic_add_return(int i, atomic_t *v); /*进行对应操作后,返回新的值*/
int atomic_sub_return(int i, atomic_t *v);
int atomic_inc_return(atomic_t *v);
int atomic_dec_return(atomic_t *v);
2.2 API实现
我们下面就介绍几个稍微有代表性的接口实现
以下基于Linux内核源码4.19,刚看是看的时候,有点摸不着头脑,因为定义的地方和引用的地方较多,不太容易找到,后来才慢慢得窥门径。
2.2.1 原子变量结构体typedef struct {
    int counter;
} atomic_t;
结构体名称:atomic_t
文件位置:include/linux/types.h
主要作用:原子变量结构体,该结构体只包含一个整型成员变量counter,用于存储原子变量的值。
2.2.2 设置原子变量操作2.2.2.1 ATOMIC_INIT#define ATOMIC_INIT(i) { (i) }
函数介绍:定义了一个ATOMIC类型的变量,并初始化为给定的值。
文件位置:arch/arm/include/asm/atomic.h,由include/linux/atomic.h引用
实现方法:这个宏定义比较简单,通过大括号将值包裹起来作为一个结构体,结构体的第一个成员就用就是给定的该值。
2.2.2.2 atomic_set#define atomic_set(v,i) WRITE_ONCE(((v)->counter), (i))

#define WRITE_ONCE(x, val) \
({       \
    union { typeof(x) __val; char __c[1]; } __u = \
        { .__val = (__force typeof(x)) (val) }; \
    __write_once_size(&(x), __u.__c, sizeof(x)); \
    __u.__val;     \
})

static __always_inline void __write_once_size(volatile void *p, void *res, int size)
{
    switch (size) {
    case 1: *(volatile __u8 *)p = *(__u8 *)res; break;
    case 2: *(volatile __u16 *)p = *(__u16 *)res; break;
    case 4: *(volatile __u32 *)p = *(__u32 *)res; break;
    case 8: *(volatile __u64 *)p = *(__u64 *)res; break;
    default:
        barrier();
        __builtin_memcpy((void *)p, (const void *)res, size);
        barrier();
    }
}
函数介绍:该函数也用作初始化原子变量
文件位置:由include/linux/atomic.h引用arch/arm/include/asm/atomic.h,再引用include/linux/compiler.h
实现方式:通过调用WRITE_ONCE来实现,其中WRITE_ONCE宏实现了一些屏蔽编译器优化的技巧,确保写入操作是原子的。
2.2.3 原子变量的加减2.2.3.1 ATOMIC_OPS/*
* ARMv6 UP and SMP safe atomic ops.  We use load exclusive and
* store exclusive to ensure that these are atomic.  We may loop
* to ensure that the update happens.
*/

#define ATOMIC_OP(op, c_op, asm_op)     \
static inline void atomic_##op(int i, atomic_t *v)   \
{         \
    unsigned long tmp;      \
    int result;       \
                                    \
    prefetchw(&v->counter);      \
    __asm__ __volatile__("@ atomic_" #op "\n"   \
"1: ldrex %0, [%3]\n"      \
" " #asm_op " %0, %0, %4\n"     \
" strex %1, %0, [%3]\n"      \
" teq %1, #0\n"      \
" bne 1b"       \
    : "=&r" (result), "=&r" (tmp), "+Qo" (v->counter)  \
    : "r" (&v->counter), "Ir" (i)     \
    : "cc");       \
}         \

#define ATOMIC_OP_RETURN(op, c_op, asm_op)    \
static inline int atomic_##op##_return_relaxed(int i, atomic_t *v) \
{         \
    unsigned long tmp;      \
    int result;       \
                                    \
    prefetchw(&v->counter);      \
                                    \
    __asm__ __volatile__("@ atomic_" #op "_return\n"  \
"1: ldrex %0, [%3]\n"      \
" " #asm_op " %0, %0, %4\n"     \
" strex %1, %0, [%3]\n"      \
" teq %1, #0\n"      \
" bne 1b"       \
    : "=&r" (result), "=&r" (tmp), "+Qo" (v->counter)  \
    : "r" (&v->counter), "Ir" (i)     \
    : "cc");       \
                                    \
    return result;       \
}

#define ATOMIC_FETCH_OP(op, c_op, asm_op)    \
static inline int atomic_fetch_##op##_relaxed(int i, atomic_t *v) \
{         \
    unsigned long tmp;      \
    int result, val;      \
                                    \
    prefetchw(&v->counter);      \
                                    \
    __asm__ __volatile__("@ atomic_fetch_" #op "\n"   \
"1: ldrex %0, [%4]\n"      \
" " #asm_op " %1, %0, %5\n"     \
" strex %2, %1, [%4]\n"      \
" teq %2, #0\n"      \
" bne 1b"       \
    : "=&r" (result), "=&r" (val), "=&r" (tmp), "+Qo" (v->counter) \
    : "r" (&v->counter), "Ir" (i)     \
    : "cc");       \
                                    \
    return result;       \
}

#define ATOMIC_OPS(op, c_op, asm_op)     \
    ATOMIC_OP(op, c_op, asm_op)     \
    ATOMIC_OP_RETURN(op, c_op, asm_op)    \
    ATOMIC_FETCH_OP(op, c_op, asm_op)
找atomic_add找半天,还找到了不同的架构下面。
原来内核通过各种宏定义将其操作全部管理起来,宏定义在内核中的使用也是非常广泛了。
函数作用:通过一些列宏定义,来实现原子变量的add、sub、and、or等原子变量操作
文件位置:arch/arm/include/asm/atomic.h
实现方式:
我们以atomic_##op为例来介绍,其他大同小异!
#define ATOMIC_OP(op, c_op, asm_op)     \
static inline void atomic_##op(int i, atomic_t *v)   \
{         \
    unsigned long tmp;      \
    int result;       \
                                    \
    prefetchw(&v->counter);      \
    __asm__ __volatile__("@ atomic_" #op "\n"   \
"1: ldrex %0, [%3]\n"      \
" " #asm_op " %0, %0, %4\n"     \
" strex %1, %0, [%3]\n"      \
" teq %1, #0\n"      \
" bne 1b"       \
    : "=&r" (result), "=&r" (tmp), "+Qo" (v->counter)  \
    : "r" (&v->counter), "Ir" (i)     \
    : "cc");       \
}  
通过ldrex和strex两个独占式的操作,保证了读写的原子性。
2.2.3.2 atomic_add和atomic_sub定义ATOMIC_OPS(add, +=, add)
ATOMIC_OPS(sub, -=, sub)
通过宏定义来实现atomic_add和atomic_sub的定义,下面我们就不一一分析了,原理都是通过ARM提供的ldrex strex也就是我们常说的Load和Store指令实现读取操作,确保操作的原子性。
3、位原子操作3.1 API接口void set_bit(nr, void *addr);  // 设置位:设置addr地址的第nr位,所谓设置位即是将位写为1
void clear_bit(nr, void *addr);  // 清除位:清除addr地址的第nr位,所谓清除位即是将位写为0
void change_bit(nr, void *addr); // 改变位:对addr地址的第nr位进行反置。
test_bit(nr, void *addr);   // 测试位:返回addr地址的第nr位。
int test_and_set_bit(nr, void *addr);// 测试并设置位
int test_and_clear_bit(nr, void *addr); // 测试并清除位
int test_and_change_bit(nr, void *addr);// 测试并改变位
3.2 API实现
同样,我们还是简单介绍几个接口,其他核心实现原理相同
3.2.1 set_bit#define set_bit(nr,p)   ATOMIC_BITOP(set_bit,nr,p)

#define ATOMIC_BITOP(name,nr,p)   \
    (__builtin_constant_p(nr) ? ____atomic_##name(nr, p) : _##name(nr,p))

extern void _set_bit(int nr, volatile unsigned long * p);

/*
* These functions are the basis of our bit ops.
*
* First, the atomic bitops. These use native endian.
*/
static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p)
{
    unsigned long flags;
    unsigned long mask = BIT_MASK(bit);

    p += BIT_WORD(bit);

    raw_local_irq_save(flags);
    *p |= mask;
    raw_local_irq_restore(flags);
}

#define BIT_MASK(nr)  (1UL << ((nr) % BITS_PER_LONG))
#define BIT_WORD(nr)  ((nr) / BITS_PER_LONG)

#ifdef CONFIG_64BIT
#define BITS_PER_LONG 64
#else
#define BITS_PER_LONG 32
#endif /* CONFIG_64BIT */
函数介绍:该函数用于原子操作某个地址的某一位。
文件位置:/arch/arm/include/asm/bitops.h
实现方式:
4、总结
该文章主要详细了解了Linux内核锁的原子操作,原子操作分为两种:整型变量的原子操作和位原子操作。
来源:嵌入式艺术







欢迎光临 谷动谷力 (http://bbs.sunsili.com/) Powered by Discuz! X3.2