

MCU 硬件设计指南

版本: V1.5

发布时间: 2021.10.30

目录

MCU 硬件设计指南	1
1. CA51 系列 MCU 原理图设计指南	3
1.1 时钟系统	3
1.2 电源系统	4
1.3 复位系统	4
1.4 LVD 和 ADC 功能	5
1.5 LCD/LED.	5
1.6 中断	6
1.7 功耗系统	6
1.8 通讯接口	7
1.9 PWM 功能	7
1.10 GPIO	8
1.11 触摸功能	9
1.12 CA51F5 DAK 功能	9
1.13 CA51F5 LED 级联驱动	9
2. LAYOUT 设计指南	11
2.1 供电设计要求	11
2.2 触摸按键设计要求	12
2.3 强于扰环境应用设计要求	18

1. CA51 系列 MCU 原理图设计指南

1.1 时钟系统

CA51 芯片有丰富的时钟系统,支持内部 RC 时钟,PLL 时钟,外接高速时钟,外部低速时钟,内部低速 RC 时钟。需要做钟机万年历等精确计时的系统,请选用支持外部低速晶振的芯片,外接晶振 32.768KHZ。需要用到高精度高速时钟时选用支持外部高速晶振的芯片(一般可选 4~27M 晶振),根据不同要求选择晶振,根据规格书配置负载电容。晶振负载电容地线走线要求必须从MCU_GND 管脚直接连到晶振负载电容下地焊盘,预防其它干扰源干扰时钟电路,否则会导致时钟漂移,造成时钟出现误差。

- ◆ 重要提醒: 在有时钟功能的机器上用到 32.768KHz 晶振时,晶体负载电容 参数需要根据使用的 32.768KHz 晶体匹配合适的电容值。
- ◆ CA51 系列 MCU 外接晶振管脚在上电默认状态为接晶振模式,必须避免在用作其他功能时有强灌电流,强推电流,高电压冲击发生,输入输出电流控制在 500UA 以下。在驱动可控硅等高压器件时避免使用。

◆ CA51 芯片搭载时钟源配置表

	外部	内置	内置		内置	内置	外部高	外部高	最高系统
芯片型号	32. 768K	131K	3. 6864	PLL		32/16M	速时钟	速时钟	工作时钟
	(晶振) RC MRC 4M RC	4M NC	RC	(晶振)	输入	工作的智			
CA51F2XXL3	√	√	√	√	√	×	√	×	27M
CA51F2XXL2	√	√	√	√	√	×	×	×	27M
CA51F351S1	×	√	√	√	√	×	×	×	27M
CA51F351S3	×	√	√	√	√	×	×	×	27M
CA51F351S4	×	√	√	√	√	×	×	×	27M
CA51F351S6	√	√	√	√	√	×	×	×	27M
CA51F3XXN2	×	√	√	√	√	×	×	×	27M

CA51F551S1	×	√	X	×	×	√	×	×	16M
CA51F551M2	×	√	X	×	×	√	×	×	16M
CA51F551N1	×	√	X	×	×	√	×	×	16M
CA51F551S3	×	√	X	×	×	√	×	×	16M
CA51F003T3	×	√	×	×	×	√	√	√	24M
CA51F003N2	×	√	X	×	×	√	√	√	24M
CA51F75X	×	√	×	×	×	√	×	×	16M*
CA51F15X	×	√	X	×	×	√	×	×	16M*

*CA51F75X, CA51F15X 工作电压大于 2.7V, 系统时钟才能跑到 16M

1.2 电源系统

CA51 系列 MCU 芯片工作电压支持 1.8V~5.0V(CA51F7/F1 工作电压为 2.2~5V),支持 RC 降压电源,AC-DC 非隔离电源以及其他类常用电源。RC 降压和 AC-DC 非隔离电源要做好电源滤波,尤其是 RC 降压电源最好采用 LDO 稳压,电压波动小于 200MV。其他类常用电源滤波电容采用 10UF+104。电源上电瞬间不能有高脉冲产生,有些 LDO 比较差,压差加高时,会产生较高的脉冲(大于 7VP-P 值),几十毫秒才能稳定,这样会导致芯片功能紊乱。

1.3 复位系统

CA51 系列 MCU 芯片内部有完善的复位电路,对于保留了外部复位引脚的芯片,此引脚无需再接复位电路,不用时可以悬空,复用复位 GPI0 口时要保证在上电瞬间该引脚不会被拉成低电平,此引脚在上电复位时有 10K

的内部上拉电阻。

1.4 LVD 和 ADC 功能

- ◆ 低电压检测(LVD)用于监控芯片自身的供电 VDD,当 VDD 小于设定的 LVD 值时,发出中断或复位。一般用于电池类产品的欠压保护。CA51F5 芯片没有集成 ADC 功能,在增强版的 CA51F5S 芯片中 LVD 功能除了检测 MCU_VDD 脚电压外,还可以检测 P00 和 P01 两个 I0 口的电压。用作此功能时,内部有 510K 左右的下拉电阻,在外接分压输入时要考虑此电阻的影响。
- ◆ CA51 系列芯片带 ADC 功能的芯片,都支持 ADC 直接检测 MCU_VDD 电压功能, 支持内部, VDD 和外部参考基准做 ADC 的基准源。内部参考源可以达到 10 位精度,其他两个基准源可达 12 位精度。外部参考源源接 ADC_VREF 引脚, 一般接 TL431/432 等专用基准芯片。ADC 最高转换速度 0.5US。

1.5 LCD/LED

♦ CA51F2/3 芯片支持 LED/LCD 驱动,支持驱动模式如下表

芯片型号	支持 LCD 驱动模式	支持 LED 驱动模式	注意事项
CA51F25XL2	4X25 5X24	5X24	LED 驱动模式 COM 口不能用作 SEG 口
CA51F25XL3	8X32 7X33 6X34 5X35	8X32	LED 驱动模式 COM 口不能用作 SEG 口
CA51F312P4	3X5 4X4	3X5 4X4	
CA51F35XP/S4	3X5 4X4	3X5 4X4	
CA51F35XP/S6	3X10 4X9 5X8	3X10 4X9 5X8	

增强型芯片 CA51F3/2,COM 口灌电流可达 80MA(Vgpio=GND+0.3V), 在设计驱动 LED 时建议采用共阴极设计,在 SEG 口串接 100R 左右电阻,开 启大管电流驱动模式,这样亮度会均匀,亮度更高。

1.6 中断

CA51 芯片有着丰富的中断源,支持两个优先级,支持中断嵌套

♦ CA51 系列芯片支持外部中断数量和引脚配置如下表

芯片型 号	外部中 断数量	外部中断管脚配置任意 I/0	触发条件
CA51F2X	11	INTO, INT1, INT2~9 配置任意管脚	支持上升和下降沿触发
CA51F3X	11	INTO, INT1, INT2 [~] 9 配置任意管脚	支持上升和下降沿触发
CA51F5X	5	INTO, INT1 除外 INT2~4 配置任意管脚	支持上升和下降沿触发
CA51F00	11	INTO, INT1, INT2 [~] 9 配置任意管脚	支持上升和下降沿触发
CA51F7X	5	INTO, INT1, INT2~4 为固定管脚管脚	支持上升和下降沿触发
CA51F1X	2	INTO, INT1 为固定管脚管脚	支持上升和下降沿触发

1.7 功耗系统

♦ CA51 系列芯片功耗如下表

芯片型号	IDLE 模式功耗	STOP 模式功耗	低速运行模式功耗
CA51F2XX	10UA	5UA	15UA
CA51F3XX	12UA	7UA	20UA
CA51F5XX	10UA	7UA	20UA
CA51F003	15UA	7UA	25UA
CA51F7XX	25UA	5UA	68UA
CA51F1XX	25UA	5UA	50UA

1.8 通讯接口

通用串口,IIC和 SPI等通讯方式连接外设时,靠 MCU 端口放置 330 欧姆电阻,IIC 在较远设备要加上拉电阻,以免导致通讯失败。

- ◆注意 RX 在上电瞬间不要有方波输入,可能会导致芯片进入下载程序模式,导致芯片不工作。
- ◆用作下载的串口,IIC 通讯口原则上不再复用其他功能,保证在线升级功能正常,GPIO 实在紧缺,建议用作按键,触摸,可拔插连接器等用途。

1.9 PWM 功能

CA51 系列 MCU 的 PWM 功能支持占空比在 16bit 范围内任意调整, CA51F2/CA51F3/CA51F003 系列支持边沿和中心对齐模式,支持死区和互补模式输出。

♦ CA51 系列芯片 PWM 特性配置表

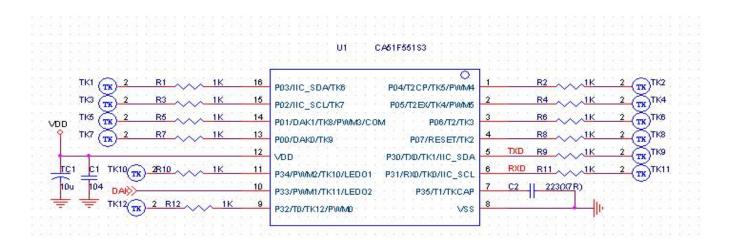
芯片型号			PWM 软硬件刹车,暂 停,中断触发 ADC
CA51F2L3	8	√	×
CA51F2L2	5	√	×
CA51F351S1	2	√	×
CA51F351S3	6	√	×
CA51F351S4	6	√	×
CA51F351S6	6	√	×
CA51F3N2	5	√	×
CA51F551S1	3	×	×
CA51F551M2	5	×	×
CA51F551N1	4	×	×
CA51F551S3	6	×	×
CA51F003T3	6	√	\checkmark
CA51F003N2	6	√	√
CA51F75X	6	×	×
CA51F15X	3	×	×

1.10 GPIO

CA51F3 增强型系列芯片所有 GPIO 可配置成高阻,可独立设置的强(10K)弱(47K)上下拉电阻,可配置为开漏输出,配置成推挽输出时可设置输出强度 和上升沿速度,在3.3V~5V供电时,强推电流(Vgpio=VDD-0.3V)8~10MA,强灌电流(Vgpio=GND+0.3V)12~17MA。超强灌电流(Vgpio=GND+0.3V)达到60MA~90MA。

◆ CA51 系列 MCU GPIO 性能配置

芯片型号	高阻	强上拉	弱 上 拉	强下拉	弱上拉	开漏	VDD=3~5V VO=VDD-0 . 3V 强推 电流	VDD=3~5V VO=GND+0 . 3V 强灌 电流	超强灌电流管脚	推挽输 出时速 度强度 可调
增强型 CA51F2	√	10K	47K	10K	47K	√	$8^{\sim}10$ MA	$12^{\sim}18$ MA	P00~P07	√
增强型 CA51F3	√	10K	47K	10K	47K	√	$8^{\sim}10$ MA	$12^{\sim}18$ MA	P00~P04	√
增强型 CA51F5	√	10K	47K	10K	47K	√	$4^{\sim}6\mathrm{MA}$	$11^{\sim}16$ MA	×	√
CA51F003	√	10K	47K	10K	47K	√	$4^{\sim}6$ MA	$11^{\sim}16$ MA	×	√
CA51F7	√	×	30K	×	30K	√	$3^{\sim}4$ MA	$3^{\sim}4MA$	P07, P10~P14	√
CA51F1	√	×	30K	×	30K	√	$3^{\sim}4$ MA	$3^{\sim}4MA$	×	√

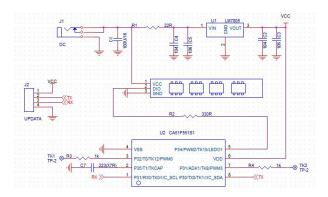

- ◆ 在 CA51 芯片工作系统中,要求所有 GPIO 的输入电压不能高过芯片供电电压,尤其注意电压检测电路的分压网络。同时,所有 GPIO 的输入电压也不能出现负压,特别是在 AC 供电的无隔离电源供电时,尤其注意过零检测,一般选择接纯数字接口(TX),最好使用三极管过零检测电路。
- → GPIO 用作机械按键按键,需要靠 MCU GPIO 端串一个 1K 电阻,如果 GPIO 直接通过按键下地,由与 CA51 系列芯片设计驱动电流较大,保护机制不是太完善,会出现在按按键时有大电流出现,导致芯片工作不正常,还有可能烧坏芯片。

1.11 触摸功能

CA51 系列 MCU 触摸模块有良好抗干扰性能,支持低功耗,支持 STOP模式唤醒。

❖ 注意使用触摸功能时必须在 TK_CAP 引脚放置 223 (X7R) 充放电电容。 温度变化区间很大的应用场景请使用 NPO 电容。电容接地直接加到 MCU_GND

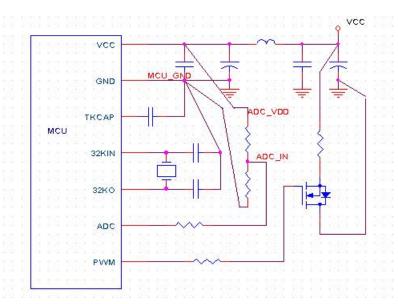
通用原理图



1.12 CA51F5 DAK 功能

CA51F5 DAK 功能可以直接取代原有设计的 ADC 按键采集按键板,把 DAKn 脚直接连接到原来的按键板的 ADC 接口上就行。主控部分不需要做任何修改。DAC 转换输出为 5 位,支持 16 级输出电压。用作此功能时,GPIO驱动小于 1MA。

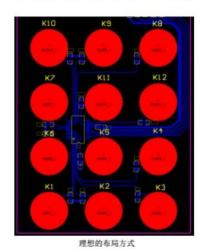
1.13 CA51F5 LED 级联驱动


CA51F5 芯片 PWM0,PWM1 两通道支持 RGB_LED 单线级联驱动,应用参考下图:

2. LAYOUT 设计指南

2.1 供电设计要求

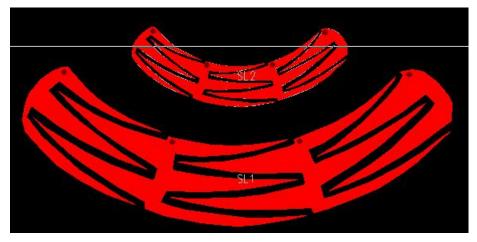
- ◆ 电源滤波和地线: 电源和地之间以最短的距离靠近 MCU 同时放置滤波电容 10UF +104 的贴片电容, MCU 贴片面尽可能大面积铺地。电源和地线 走线必须先经过滤波电容, 然后再进 MCU 电源管脚。
- ♦ 晶振地和负载电容地必须直接连接到 MCU_GND 管脚,和其他部分地线隔离开来。
- ♦ 触摸模块的充电电容接地点同样直接连接到 MCU—GND 管脚,避免和有 干扰的地连接,同时避开把电容放置在发热的地方。
- ◆ ADC 分压电路(传感器)的电源必须直接连接到 MCU_VDD,地也必须接 地 MCU_GND

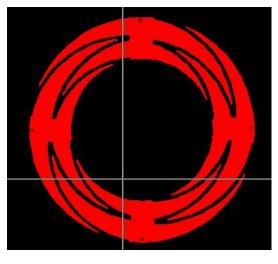


→ 如有些应用环境电路干扰源特别大的状况下,比如:继电器,电机等控制的电路滤波电容需要配置 100UF,同 MCU_VDD 供电线路需要串联一个二极管再加电容构成滤波电路,以减弱大干扰和打电流拉低电源电压对芯片的影响。

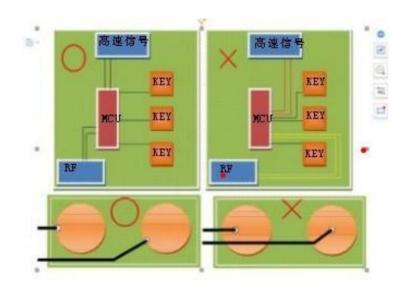
2.2 触摸按键设计要求

- ◆ 在触摸应用中,必须在 TK_CAP 引脚上就近外接触摸参考电容(典型电容值: 223 (X7R))。在触摸走线靠近 MCU 位置串联电阻(典型阻值:1K,强干扰时可选用 3.3K),此电阻有助于抗电磁及电源干扰。
- ◆ PCB 板空间允许的话,芯片尽量放在触摸面板中间位置,以使各触摸键走线尽量等长。电路布局开始前请先设计规划并布局好触控按键,再去设计布局其他电气脚位。触摸按键到连线尽量短和细,线宽 7-10mi1(越细越好),线长越短越好(长度不超过 300mm)。触摸按键到 IC 引脚尽量避免走跳线。如下图所示:

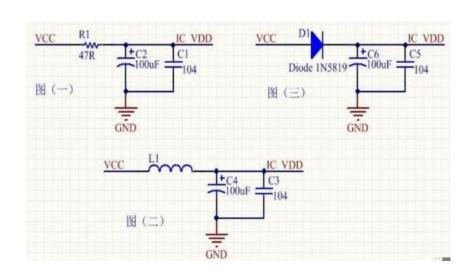

a) 元件布局。触摸 IC 放置在触摸焊盘的中间位置。


- ◆ 感应 Pad 可以用电路板的铜箔来做,也可以采用软性电路板(FPC),ITO 或银漆印刷等导电物质来完成。ITO的信号部分要求较高,设计时须特别留 意。
- ◆ 感应 Pad 面积尽量不要过小,否则容易导致触发量不够,灵敏度跟触摸 Pad 面积成正比,建议不小于人体手指的接触面积(10~12.5mm*10~12.5mm 或直 径不小于 8MM 的圆形。
- → 感应 Pad 可以是任何形状,但还是建议集中在一个正方形或是圆形,最大的贴合手指接触面,以确保感应效果良好,应避免设计成窄长的形状(非人手指接触的感应例外)。
- → 滑条,滚轮的 Pad 也同样适用,但布线要求更严格,建议 PCB 打样前寻求 FAE 支持工程师做一个初步的评估和指导。滑条的设计一般采用 4 个触摸通 道,设计成互相交错的 PAD, PAD 面积的变化需要设计成线性变化,参考下图:

中间留有灯孔的滑条 PAD



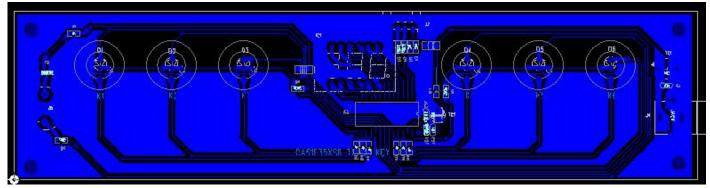
弧形滑条



圆形滑环

- ◆ 不管是滑条还是滑环,PAD的宽度控制在8~10MM,这是一个成人手指的宽度, 这样的PAD正好被手指覆盖,每次手指划过都会有相差不大的触摸数据产生, 有利于产品的稳定性,滑条的可靠性。
- → 感应 Pad 之间的距离建议大于 5mm(间距越大相互干扰越小)。每一个感应 Pad 的走线尽量保持相同长度,且 PCB 远离边缘来减少杂讯干扰。感应 Pad 最好 有三倍线宽以上的间距为佳(走线一出 IC 脚位就可按此规则),避免与高频 信号线平行,不可避免时请以垂直方式横跨高速信号线。感应 Pad 走线不可 横跨在其他感应 Pad 的正下方。

◆ 电源滤波设计方式,MCU 电压范围最大可以达到 1.8V-5.0V 宽电压工作。在工作状态中,IC 电源电压必须保证相对稳定(一般不超过 250mV/S)。故在大多数场合,建议电源使用三端稳压 IC (LDO) 供电,已确保 IC 电压的稳定。使用锂电池或干电池的场合,则要考虑长时间使用后的电压波动对整个触控灵敏度的影响。在许多应用系统中,即使使用了三端稳压 IC 供电,但由于系统干扰,负载突发等原因,IC 电压还会有一定的纹波干扰。为了防止这些干扰,以达到更好的触控效果,推荐加一些滤波电路。



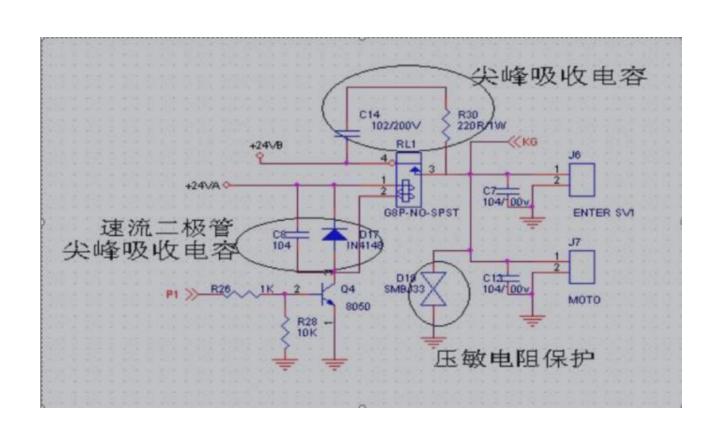
图(一) RC 滤波能起到系统抗干扰

图(二)LC 滤波能起到防止较大的高频干扰作用

图(三)二极管方式的电路能起到防止电机启动,蜂鸣器和红外收射等引起的电压波

◆ 防水板的 PAD 设计, 防水功能主要是靠触摸走线, PAD 和地之间的分布电容量来表征触摸灵敏度, 因此和铺铜触摸 LAYOUT 有区别, 铺铜触摸 PAD需要远离地, 减小地与 PAD 的分布电容, 如下图所示:

普通板触摸 PAD, 触摸走线与地的间距要求大于 3 倍线宽, 触摸投影区要求挖空, 触摸 PAD 与地的间距大于 1.5MM



防水板,触摸走线和 PAD 和地越接近越好

- → 关于普通触摸板的铺地建议,MCU 和走线区域要求铺地,在触摸 PAD 区域 这个问题必须在灵敏度和抗干扰中来折中处理,在触摸 PAD 区域铺地多抗 干扰能力强,不铺地则灵敏度高,所以在没有干扰的情况下 PAD 区域不要 铺地,板材厚度小于 1.2MM 时,强烈建议在在触摸 PAD 区域不要铺地,否则灵敏度极低,在有干扰的情况下,注意铺地是地线从 MCU 的 GND 引出,不要连接到干扰源地线,可以把用干净的地线把 PAD 包围起来,间距大于 1.5MM, 在焊接弹簧的情况下,在弹簧的投影区以外用干净的地线把 PAD 包围起来。
- → 成品组装固定 PCB 的外壳或其他结构的装配一定要绝缘油漆,不能含有金属粉或碳粉,接地的金属机壳可使灵敏度降低。三种最常见的对触摸感应影响较大的机壳元件为金属组件、通讯线、电池及感应 PCB 上覆盖物的电镀层。无论何时,金属组件应远离感应元件走线。当必须使用组件时,推荐使用非金属组件。如果必须使用金属组件或做为装饰物置于传感器旁边,必须将其接地。也可以将机壳连接至被动屏蔽线。无论何时,通讯线缆应远离传感器及走线。另外,外壳和触摸感应面必须完全接触。

2.3 强干扰环境应用设计要求

◆ 电路上有继电器或电机的应用,在频繁切换控制继电器时,继电器的常 开触点丌断的通断 220V 交流给负载供电,在此过程中常开两个触点会打 火,打火时会产生丰富的高频干扰,干扰的强度会随着负载的电流增大 而增大,这种干扰会以传导和辐射的方式干扰其他电路,必须在动触电 上加 RC 吸收电路。

◆ 在强干扰电路中,需要把干扰电路部分地线分开,各部分采用单点接地方式,MCU 电源滤波要做好,滤波电容需要加大 100UF 以上,所有输入口靠 MCU 端加 1K 电阻,通讯线也要靠 MCU 端接 330R 电阻,MCU 不用的管脚就近接地。