谷动谷力

标题: ELF 文件、镜像(Image)文件、可执行文件、对象文件详解 [打印本页]

作者: 鸣涧    时间: 2022-12-30 18:22
标题: ELF 文件、镜像(Image)文件、可执行文件、对象文件详解
ELF 文件、镜像(Image)文件、可执行文件、对象文件详解

ELF 文件规范

ELF(Executable and Linking Format)是一个二进制文件规范。用于定义不同类型的对象文件(Object files)中都放了什么东西、以及都以什么样的格式去放这些东西。

现在流行的二进制可执行文件格式 (Executable File Format),主要是 Windows 下的 PE(Portable Executable)和 Linux 的 ELF(Executable and Linking Format)可执行和链接格式)。他们都是 COFF(Common Object File Format)的变种。ARM 体系中采用的也是 ELF 文件格式。

COFF 是在 Unix System V Release 3 时由 UNIX 系统实验室(UNIX System Laboratories, USL)首先提出并且使用的文件规范,后来微软公司基于 COFF 格式,制定了 PE 格式标准,并将其用于当时的 Windows NT 系统。在 System V Release 4 时,UNIX 系统实验室在 COFF 的基础上,开发和发布了 ELF 格式,作为应用程序二进制接口 (Application Binary Interface,ABI)。

此后,工具接口标准委员会(Tool Interface Standard Committee,TISC)选择了正在发展中的 ELF 标准作为工作在 32 位 INTEL 体系上不同操作系统之间可移植的二进制文件格式。可以从这里 找到详细的标准文档。如下图:

TISC 共出过两个版本(v1.1和 v1.2)的标准文档。两个版本内容上差不多,但 v1.2 版本重新组织了原本在 v1.1 版本中的内容。可读性更高。两个版本的目录如下所示: 由于 TISC 的 v1.2 比较老旧,且后续没有再更新,尤其是在 64 位出现之后,原来的 ELF v1.2 已经不再试用,因此,System V 对 ELF v1.2 进行了扩展,这个扩展就是 System V Application Binary Interface AMD64 Architecture Processor Supplement,实际了 Unix 系统与 类 Unix 系统都使用 System V 扩展的这个版本。

在 ELF 文件规范中,把系统中采用 ELF 格式的文件(规范中称为「对象文件(Object File)」)归类为以下三种:

在 Linux 系统中,还有一类文件,被称为「核心转储文件(Core Dump File)」 ,当进程意外终止,系统可以将该进程地址空间的内容及终止时的一些信息转存到核心转储文件。 对应 Linux 下的 core dump。

对象文件参与程序链接(构建程序)和程序执行(运行程序)。 为了方便和高效,对象文件(Object File)格式提供文件内容的并行视图,反映了这些活动的不同需求。 下图显示了对象文件(Object File)的组织。

其中,各部分的含义都是规范定义好的! ?

数据表示法

??对象文件(Object File)格式支持具有 8 位字节和 32 位体系结构的各种处理器。 然而,它旨在可扩展到更大(或更小)的体系结构。 因此,对象文件(Object File)用一种与机器无关的格式表示一些控制数据,从而可以识别对象文件(Object File)并以通用方式解释它们的内容。 目标处理器中的剩余数据使用目标处理器的编码,而不管创建文件的机器如何。出于可移植性的原因,ELF 不使用位字段。

Name
Size
Alignment
Purpose

Elf32_Addr44Unsigned program address
Elf32_Half22Unsigned medium integer
Elf32_Off44Unsigned file offset
Elf32_Sword44Signed large integer
Elf32_Word44Unsigned large integer
unsigned char11Unsigned small integer

??对象文件格式定义的所有数据结构都遵循相关类的自然大小和对齐准则。如果需要,数据结构包含显式填充,以确保 4 字节对象的 4 字节对齐,强制结构大小为 4 的倍数,以此类推。数据从文件开始也有适当的对齐。因此,例如,包含 Elf32 Addr 成员的结构将在文件中的 4 字节边界上对齐。

字符表示法

??ELF 中对于符号的字符编码也有一定的要求。当 ELF 接口文档提到字符常量时,例如’/‘或’\ n’,它们的数值应遵循 7 位 ASCII 准则。 对于先前的字符常量,单字节值分别为 47 和 10。 ??根据字符编码,在 0 到 127 范围之外的字符值可以占用一个或多个字节。 应用程序可以根据需要使用不同语言的不同字符集扩展来控制自己的字符集。 尽管 TIS-一致性 不限制字符集,但它们通常应遵循一些简单的指导原则:

关于 ELF 文件规范这里就不多做详细介绍了,感兴趣的可以去 Linux 基金会的官方网站下载规范来看看!

ARM ELF 文件格式

??ARM 体系中,所有文件均采用的 ELF 文件格式。我们可以在 ARM 的官网找到 ARM 关于 ARM ELF 文件格式的说明文档。后文参考部分的下载中是目前可以从 ARM 官网找到的所有和 ARM ELF 相关的 PDF 文档。

??目前,我们可以找到的 ARM ELF 相关的文档主要有 4 个:《ARM ELF File Format》、《ELF for the ARM? Architecture》、《ARM ELF》以及 ARM 的链接器手册。其中,《ARM ELF File Format》是比较早期的文档,针对于 ARM SDT 时代的 ELF 文件,有点过时了;后者三个则是最新的介绍文档,《ELF for the ARM? Architecture》 仅仅是对 ARM ELF 取值的一些特殊说明,是在读者先了解 ELF 文件规范的基础上进行的说明。

??ARM 中的各种源文件(包括汇编文件,C 语言程序及 C++ 程序等)经过 ARM 编译器编译后生成 ELF 格式的对象文件(Object File)(.o文件)。这些对象文件(Object File)和相应的 C/C++ 运行时用到的库经过 ARM 连接器处理后,生成 ELF 格式的镜像文件(image),这种 ELF 格式的映像文件是一种可执行文件,可被写入嵌入式设备的 ROM 中。

??在 ARM 体系中,所有的二进制文件均被称为「对象文件」。其中,链接器最终生成的 ELF 格式的可执行文件又被称为「镜像文件(Image file)」。ARM ELF 镜像文件或者对象文件由「输入节(Input Sections)」「输出节(Output Sections)」「域(Regions)」「段(Segments)」 组成,每个链接阶段都有不同的镜像视图。如下图所示:

When describing a memory view:

输入节 Input section

??一个输入节就是是输入对象文件中的一个独立的部分。 它包含代码,初始化数据,或着是描述未初始化或必须在镜像文件执行前设置为零的内存片段。 这些属性由 RO,RW,XO 和 ZI 等属性表示。 armlink 使用这些属性将输入节分组为更大的构建块,称为输出节和域。

输出节 Output section

??一个输出节就是一组输入节的组合,它们具有相同的 RO,RW,XO 或 ZI 属性,并且由链接器连续放置在存储器中。 输出节与组成它的输入节具有相同的属性。 在输出节中,输入节根据节放置规则进行排序。

域 Region

??一个域最多包含四个输出节,具体取决于内容和具有不同属性的节的数量。 默认情况下,域中的输出节根据其属性进行排序。 首先是 XO 属性的输出节,然后是 RO 属性的输出节,再然后是 RW 属性的输出节,最后是 ZI 属性的输出节。 域通常会映射到物理存储设备,例如 ROM,RAM 或外围设备。 您可以使用分散加载文件来更改输出节的顺序。

程序段 Program segment

??一个程序段对应于一个加载域,并且包含执行域。 程序段包含文本和数据等信息。

存在 XO( execute-only)节时的注意事项

镜像的加载视图和执行视图

??镜像的域在加载时放置在系统存储器映射中。 内存中域的位置可能会在执行期间发生变化。在执行镜像之前,可能必须将镜像的某些域移动到其执行地址并创建 ZI 输出节。 例如,初始化的 RW 数据可能必须从其 ROM 中的加载地址复制到 RAM 中的执行地址。镜像的内存映射具有以下不同视图:

加载视图 Load view

根据镜像加载到内存中时所处的地址,即镜像执行开始前的位置,描述每个镜像的域和节。

执行视图 Execution view

根据镜像执行期间所在的地址描述每个镜像的域和节。

下图显示了没有(XO)节的镜像的这些视图:

下图显示了具有 XO 节的镜像的加载和执行视图:

Image entry points

??镜像中的入口点就是镜像中的一个位置(地址),该位置(地址)会被加载到 PC 寄存器。 它是程序执行开始的位置。 虽然镜像中可以有多个入口点,但在链接时只能指定一个入口点。并非每个 ELF 文件都必须有入口点。 不允许在单个 ELF 文件中存在多个入口点。

??对于嵌入式 Cortex-M 核的程序,程序的执行是从复位向量所在的位置(地址)开始执行。复位向量会被加载到 PC 寄存器中,且复位向量的位置(地址)并不固定。 通常,复位向量指向 CMSIS Reset_Handler 函数。 有两种不同类型的入口点:

如果加载程序要使用嵌入式的映像,则它必须在标头中指定一个初始入口点。 使用--entry命令行选项选择入口点。

ARM ELF 文件实例

??与标准的 ELF 文件相比,ARM ELF 的某些值比较特殊,下面以实际文件来说明一下每个部分。编译工具如下图:

编译后,会在对应目录下生成 .o 文件和 .axf 文件,为了分析 ELF 文件,我们将使用 readelf 工具。在详细解析之前,先用 Winhex 直接打开生成的 .o 文件,可以看到文件开头有 ELF 字样。表明它是一个 ELF 文件。如下: 注意:.o 不是 ARM 的可执行文件!axf 为可执行文件。以下用两种程序作对比。

??一个简单的可执行 ARM ELF 文件的概念布局如下图所示。请注意,文件中各部分的实际排序可能与下图中的顺序不同,因为只有 ELF Header 在文件中具有固定位置。

注意,针对目前最新版本的 ARM ELF,上图有点过时!

ELF Header

??ELF Header 描述了体系结构和操作系统等基本信息,并指出 Section Header Table 和 Program Header Table 在文件中的什么位置。实际文件中,只有 ELF Header 位置是绝对的,且只能在最开始,其他部分部分的位置顺序并不一定完全相同。

??Program Header Table 在汇编和链接过程中没有用到,所以在重定位文件中可以没有;Section Header Table 中保存了所有 Section 的描述信息,Section Header Table 在加载过程中没有用到,对于可执行文件,可以没有该部分。当然,对于某些类型的文件来说,可以同时拥有 Program header table 和 Section Header Table,这样 load 完后还可以重定位。(例如:shared objects)

??ELF Header 可以使用如下数据结构表示:

#define EI_NIDENT 16

typedef struct {
    unsigned char   e_ident[EI_NIDENT]; // Magic
    Elf32_Half      e_type;             // Type
    Elf32_Half      e_machine;          // Machine
    Elf32_Word      e_version;          // Version
    Elf32_Addr      e_entry;            // Entry point address
    Elf32_Off       e_phoff;            // Start of program headers
    Elf32_Off       e_shoff;            // Start of section headers
    Elf32_Word      e_flags;            // Flags   
    Elf32_Half      e_ehsize;           // Size of this header
    Elf32_Half      e_phentsize;        // Size of program headers
    Elf32_Half      e_phnum;            // Number of program headers
    Elf32_Half      e_shentsize;        // Size of section headers
    Elf32_Half      e_shnum;            // Number of section headers
    Elf32_Half      e_shstrndx;         // Section header string table index
} Elf32_Ehdr;
123456789101112131415161718

下面两幅图分别显示了不同文件的 ELF Header。以上数据结构中的注释,即对应于下图中的各部分字段。 .o 文件 ELF Header 如下图所示:

.axf 文件 ELF Header 如下图所示: 下面对以上两幅图中的内容做一下详细介绍:

注意:实际文件中,每一部分的位置顺序并不一定完全相同,只有 ELF Header 位置是绝对的,且只能在最开始。

Section Header(节头)

??节头表提供了对 ELF 文件中所有节的访问。节中包含对象文件(Object File)中的所有信息,除了:ELF 头部、程序头部表格、节头部 表格。节满足以下条件:

??ELF 头部中,e_shoff 成员给出从文件头到节头部表格的偏移字节数;e_shnum 给出表格中条目数目;e_shentsize 给出每个项目的字节数。从这些信息中可以确切地定位节的具体位置、长度。节头部表格中比较特殊的几个下标如下:

名称
取值
说明

SHN_UNDEF0标记未定义的、缺失的、不相关的,或者没有含义的节引用
SHN_LORESERVEOxFF00保留索引的下界
SHN_LOPROC0xFF00SHN_HIPROC 0XFF1F 保留给处理器特殊的语义
SHN_ABS1包含对应引用量的绝对取值。这些值不会被重定位所 影响
SHN_COMMON2相对于此节定义的符号是公共符号。如 FORTRAN 中 COMMON 或者未分配的 C 外部变量。
SHN_HIRESERVE
保留索引的上界

介于 SHN_LORESERVESHN_HIRESERVE 之间的表项不会出现在节头部表中。

.o文件 Section Header(部分)

.axf 文件 Section Header 上图中的表头可以用如下数据结构描述(对应关系见注释):

typedef struct {
    Elf32_Word sh_name;         // name
    Elf32_Word sh_type;         // Type
    Elf32_Word sh_flags;        // Flg
    Elf32_Addr sh_addr;         // Addr
    Elf32_Off sh_offset;        // Off
    Elf32_Word sh_size;         // Size
    Elf32_Word sh_link;         // Lk
    Elf32_Word sh_info;         // Inf
    Elf32_Word sh_addralign;    // Al
    Elf32_Word sh_entsize;      // ES
} Elf32_Shdr;
123456789101112

注意:

??ARM 节名称是以下面列出的具有预定义含义的标准前缀之一开始的名称,或者是包含美元($)字符的名称。 在 ARM EABI 下没有其他具有特殊意义的段名称。

节前缀名
节类型
节属性
解释

.bssSHT_NOBITSSHF_ALLOC+SHF_WRITE本节保存有助于程序内存映像的未初始化数据。 根据定义,当程序开始运行时,系统将使用零初始化数据。 该部分不占用文件空间,如段类型 SHT_NOBITS 所示。
.commentSHT_PROGBITSNone本节包含版本控制信息
.dataSHT_PROGBITSSHF_ALLOC+SHF_WRITE这些部分保存有助于程序内存映像的已初始化数据
.data1SHT_PROGBITSSHF_ALLOC+SHF_WRITE

.debug…SHT_PROGBITSNone本节保存符号调试信息。 内容未指定。 具有前缀.debug的所有段名保留供将来使用
.dynamicSHT_DYNAMICSHF_ALLOC [+SHF_WRITE]本节保存动态链接信息,并具有SHF_ALLOC和SHF_WRITE等属性。 操作系统和处理器确定SHF_WRITE位是否被置位
.hashSHT_HASH[SHF_ALLOC]本节包含一个符号哈希表。
.lineSHT_PROGBITSNone本节保存符号调试的行号信息,其中描述了源程序和机器代码之间的对应关系。 内容未指定
.rodataSHT_PROGBITSSHF_ALLOC这些部分保存通常有助于过程映像中的不可写段的只读数据
.rodata1SHT_PROGBITSSHF_ALLOC

.rel name .rela nameSHT_REL SHT_RELA[SHF_ALLOC]这些节中包含了重定位信息。如果文件中 包含可加载的段,段中有重定位内容,节 的属性将包含 SHF_ALLOC 位,否则该位 置 0。传统上 name 根据重定位所适用的节 区给定。例如 .text 节的重定位节名字,将是:.rel.text 或者 .rela.text。
.shstrtabSHT_STRTABNone本节保存节名称。
.strtabSHT_STRTAB[SHF_ALLOC]此节包含字符串,通常是代表与符号表项 相关的名称。如果文件拥有一个可加载的 段,段中包含符号串表,节的属性将包含 SHF_ALLOC 位,否则该位为 0。
.symtabSHT_SYMTAB[SHF_ALLOC]此节包含一个符号表。如果文件中包含一 个可加载的段,并且该段中包含符号表,那 么节的属性中包含SHF_ALLOC 位,否则 该位置为 0。
.textSHT_PROGBITSSHF_ALLOC+ SHF_EXECINSTR本节包含程序的文本或可执行指令

除了以上标准节外,ARM 架构下,还有以下特殊的节:

节前缀名
节类型
节属性
说明

.ARM.exidx*SHT_ARM_EXIDXSHF_ALLOC + SHF_LINK_ORDER以.ARM.exidx开头的节包含部分展开的索引条目。
.ARM.extab*SHT_PROGBITSSHF_ALLOC以.ARM.extab开头的节包含异常展开信息的名称部分。
.ARM.preemptmapSHT_ARM_PREEMPTMAPSHF_ALLOC以.ARM.preemptmap开头的节包含一个BPABI DLL动态链接优先地图。
.ARM.attributesSHT_ARM_ATTRIBUTESnone包含构建属性
.ARM.debug_overlaySHT_ARM_DEBUGOVERLAYnone

.ARM.overlay_tableSHT_ARM_OVERLAYSECTIONSee DBGOVL for details

??这里需要注意一下 Debug Sections。Debug Sections 仅在调试时使用,稍微复杂一些。ARM 可执行 ELF 文件的调试节中包含多种类型的调试信息,ELF 可执行文件的使用者(如armlink)可以通过检查可执行文件的节表来区分这些种类型的调试信息。

??ARM 系列的开发工具在不同的发展时期,采用的调试信息是有区别的,后来统一采用 DWARP。目前采用的应该是 3.0 版本。具体如下:

关于DWARF调试标准详见:http://www.dwarfstd.org/。目前最新版本是The DWARF Debugging Standard Version 5

Program Headers(程序头)

??可执行文件或者共享对象文件(Object File)的程序头部是一个结构数组,每个结构描述了一个段或者系统准备程序执行所必需的其它信息。对象文件(Object File)的"段"包含一个或者多个"节",也就是"段内容(Segment Contents)"。程序头部仅对于可执行文件和共享对象文件(Object File)有意义。 图7 Program Header

程序头可以使用如下数据结构来表示(对应关系见注释):

typedef struct {
Elf32_Word    p_type;       // Type
Elf32_Off     p_offset;     // Offset
Elf32_Addr    p_vaddr;      // VirtAddr
Elf32_Addr    p_paddr;      // PhyAddr
Elf32_Word    p_filesz;     // FileSiz
Elf32_Word    p_memsz;      // MemSiz
Elf32_Word    p_flags;      // Flg
Elf32_Word    p_align;      // Align
} Elf32_Phdr;
12345678910
Symbol table(符号表)

??一个对象文件的符号表保存了定位和重定位所在程序的符号定义和引用所需的信息。符号表以数组的下标进行索引。0 指定表中的第一个条目,并用作未定义的符号索引。ARM 结构中,符号表与标准的 ELF 文件没有任何区别。

图12 .o文件 Symbol table(部分)

??在 C 语言中,符号表保存了程序实现或使用的所有全局变量和函数,如果程序引用一个自身代码未定义的符号,则称之为未定义符号,这类引用必须在静态链接期间用其他目标模块或库解决,或在加载时通过动态链接解决。

符号表可以使用以下数据结构表示:

typedef struct {
Elf32_Word      st_name;    // Name
Elf32_Addr      st_value;   // Value
Elf32_Word      st_size;    // Size
unsigned char   st_info;    //
unsigned char   st_other;   
Elf32_Half      st_shndx;   // Ndx
} Elf32_Sym;
12345678

??The symbols in ELF object files convey specific information to the linker and loader. See section 4, ARM- and Thumb-Specific Definitions, for a description of the actual linking model used in the system.

As mentioned above, the symbol table entry for index 0 (STN_UNDEF) is reserved. It is shown in Figure 3-18. Figure 3-18, Symbol Table Entry: Index 0

Name
Value
Note

st_name0No name
st_value0Zero value
st_size0No size
st_info0No type, local binding
st_other0

st_shndxSHN_UNDEFNo sectionString table(字符串表)

??字符串表节包含以 NULL(ASCII 码 0)结尾的字符序列,通常称为字符串。ELF 对象文件(Object File)通常使用字符串来表示符号和节名称。对字符串的引用通常以字符串在字符 串表中的下标给出。ARM结构中,字符串表与标准的 ELF 文件没有任何区别。

axf 文件

??axf 文件是 ARM 的调试文件,其格式符合上一节讲的对象文件(Object File)格式(ELF)。其中除了包含了完整的 bin 文件外,还附加了其他的调试信息。在调试的时候,这些调试信息是不必下到 RAM 中去的,真正下到 RAM 中的信息仅仅是可执行代码。下图为 axf 文件的头部。

??通过直接查看完整的 axf 文件可以看出,axf 中绝大多数都是和调试相关的内容。真正的 Bin 只是其中的一小部分。Bin 的结尾处在 axf 文件中也很容易找到,再次就不在赘述。 ??既然前面我们说了,axf 文件就是 ELF 文件格式,那么我们可以使用 readelf 工具,具体查看一下axf文件。下图是一个 axf 文件的节表

Bin文件

??bin 文件是 ARM 的可执行文件,是最纯粹的二进制机器代码。与 HEX 文件包括地址信息的不同,BIN 文件格式只包括了数据本身。在烧写或下载 HEX 文件的时候,一般都不需要用户指定地址,因为 HEX 文件内部的信息已经包括了地址。而烧写 BIN 文件的时候,用户是一定需要指定地址信息的。 ??ARM 的 Bin 文件就是 axf 的精华部分(掐掉ELF头,去掉 .symtab、.debug和.symtab区里的信息)。下图是笔者使用 Winhex 截取的 ARM 的 Bin 文件的开头和结尾的示意图。

hex 文件

??首先,hex 文件最初由 Intel 提出。在 Intel HEX 文件中,每一行是一个 HEX 记录,由十六进制数组成的机器码或者数据常量,Intel HEX 文件经常被用于将程序或数据传输存储到 ROM、EPROM,大多数编程器和模拟器使用 Intel HEX 文件。 ??hex 文件全部由可打印的 ASCII 字符组成。如下图就是 ARM-MDK5.22 生成的一个hex文件(部分)

从上图不难看出,hex 文件就是一个个的十六进制的字符串。实际上,一个 Intel HEX 文件可以包含任意多的十六进制记录,每条记录有五个域,每条记录都由一个冒号":"打头。一个数据记录以一个回车和一个换行结束。其格式如下::CCAAAARR[DD...]ZZ其中:

举例如下::10400000781A00203D420008034C0008D14B0008FC

参考






欢迎光临 谷动谷力 (http://bbs.sunsili.com/) Powered by Discuz! X3.2