【电子基础知识】碳化硅设计中的热管理浅析
本帖最后由 sunsili 于 2023-10-11 20:30 编辑【电子基础知识】碳化硅设计中的热管理浅析
随着我们寻求更强大、更小型的电源解决方案,碳化硅 (SiC) 等宽禁带 (WBG) 材料变得越来越流行,特别是在一些具有挑战性的应用领域,如汽车驱动系统、直流快速充电、储能电站、不间断电源和太阳能发电。这些应用有一点非常相似,它们都需要逆变器(图 1)。它们还需要紧凑且高能效的轻量级解决方案。就汽车而言,轻量化是为了增加续航里程,而在太阳能应用中,这是为了限制太阳能设备在屋顶上的重量。
图 1.典型的 EV 动力总成,其中显示了逆变器
半导体损耗
决定逆变器效率的主要因素之一是所使用的半导体器件(IGBT / MOSFET)。这些器件表现出两种主要类型的损耗:导通损耗和开关损耗。导通损耗与开通状态下的导通电阻 (RDS(ON)) 成 正比,计算方法为漏极电流 (ID) 与漏源电压 (VDS) 的乘积。
将 SiC MOSFET 的 VDS 特性与类似 Si IGBT 的特性进行比较,可以观察到,对于给定电 流,SiC 器件的 VDS 通常较低。还值得注意的是,与 IGBT 不同,SiC MOSFET 中的 VDS 与 ID成正比,这意味着它在低电流下的导通损耗会显著降低。这在高功率应用(例如汽车和太阳能)中非常重要,因为它意味着在这些应用中,逆变器在其工作生命周期的大部分时间处于小功率工 况,效率会有显著提高,损耗更低。
图 2.Si IGBT 和 SiC MOSFET 的 VDS 比较
驱动损耗与开关器件所需的栅极电荷 (Qg) 成正比。这是每个开关周期都需要的,使其与开关频率成正比,并且 Si MOSFET 比 SiC 器件更大。设计人员热衷于提高开关频率以减小磁性元件的尺寸、重量和成本,这意味着使用 SiC 器件会带来显著优势。
热管理影响
电源系统中的所有损耗都会变成热量,这会影响元件密度,从而增加终端应用的尺寸。发热组件不仅会升高其自身的内部温度,还会升高整个应用的环境温度。为确保温升不会限制运行甚至导致组件故障,需要在设计中进行热管理。
SiC MOSFET 能够在比硅器件更高的频率和温度下运行。由于它们可以承受更高的工作温度,因此减少了对热管理的需求,可以允许器件本身产生更大的热量。这意味着,将基于硅的设计与等效的基于 SiC 的设计进行比较时,热管理要求要低得多,因为 SiC 系统产生的损耗更低,并且可以在更高的温度下运行。
通过比较,一个典型的 SiC 二极管在 80kHz 下工作时,损耗比同等硅二极管低 73%。因此, 在太阳能应用和电动汽车的大功率逆变器中,SiC 器件的效率优势将对降低电力系统的热管理需 求产生非常显著的影响,可能降低 80% 或更多。
基于SiC的电源系统的总成本尽管 SiC 器件投入实际使用已经有一段时间了,但人们认为基于 SiC 的设计最终成本将高于硅基设计,因而在某些方面减缓了 SiC 器件的采用速度。然而,若是直接比较硅基器件和SiC 器件的相对成本,而不考虑每种技术对整体系统成本的影响,可能会使设计人员得出错误的结论。
如果我们考虑 30 kW 左右的硅基电源解决方案,用于开关的半导体器件加起来约占物料清单成本的10%。主要的无源元件(电感器和电容器)占剩余成本的大部分,分别为 60% 和 30%。
虽然 SiC 器件的单位成本确实高于等效的硅基器件,但 SiC 器件的性能降低了对电感器和电容器的要求,显著降低了系统的尺寸、重量和成本。仅此一项就可以将 SiC 的物料清单的总成本低于同等硅基解决方案。然而,正如我们所见,基于 SiC 的解决方案中的热管理成本也明显更低。因此,加上这种成本节约意味着 SiC 设计更高效、更小、更轻,而且一定程度上成本更低。
安森美 (onsemi) 最新的 1200 V 和 900 V N 沟道 EliteSiC MOSFET具有低反向恢复电荷的体二极管,可以显著降低损耗,即使在更高的频率下操作也是如此。芯片尺寸小有助于高频操作,减少栅极电荷,减小米勒 (Crss) 和输出 (Coss) 寄生电容,从而减少开关损耗。
这些新器件的 ID 额定电流高达 118 A,可提高整体系统效率并改善EMI,同时允许设计人员使用更少(和更小)的无源元件。如果需要处理更高电流,这些器件可以配置为并联工作,因为它们具有正温度系数而不受温度影响。
主要有两种热管理方法:主动或被动。被动方法使用散热片或其他类似器件(例如热管)将多余的热量从发热器件转移到外壳,进而消散到周围环境中。散热片的散热能力随着尺寸的增加而增加,散热能力与可用的表面积成正比,为了在最小的体积中实现最大的表面积,这通常会引入复杂的设计。
主动散热通常涉及某种形式的降温装置,例如电动汽车应用中的风扇或冷却液。由于它们会产生强制气流,因此它们可以在受限空间内提供更多散热。然而,也有一些明显的缺点,包括风扇可靠性和需要在逆变器外壳上开孔以允许气流流通(这也可能导致灰尘或液体进入)。此外,风扇需要额外的电能才能运行,这会影响整体系统的效率。
总结
电源设计人员面临着提供更高效、更可靠和体积更小的解决方案的挑战,他们正在寻求 SiC 等新技术来帮助他们应对这些挑战并降低总成本。
基于 SiC 的开关器件使设计人员能够让系统在更高的温度和频率下以更低的损耗运行,这是应对这些挑战的关键。此外,这些电气性能优势意味着无源器件的热管理要求和元件值的显著降低,从而进一步降低成本和尺寸/重量。因此,SiC 方案能够以更小的尺寸和更低的成本实现更高的性能水平。
页:
[1]